Improving Neural Response Diversity with Frequency-Aware Cross-Entropy Loss

Shaojie Jiang Pengjie Ren Christof Monz Maarten de Rijke University of Amsterdam

Summary

Task: We address the low-diversity problem of Sequence-to-Sequence (Seq2Seq) based chatbots – the problem of frequently generating dull responses like "I don't know" or "I'm sorry".

Method: Other than previous diagnoses, we believe this problem is also caused by frequent tokens. Therefore, we propose a new loss function to counter the effect of different token frequencies.

Main contributions:

- ► We show that frequency variance of different tokens can cause model over-confidence and low response diversity.
- ► We propose a Frequency-Aware Cross-Entropy (FACE) loss function to balance per-token training loss, which alleviates model over-confidence and, hence, improves response diversity.
- ► We investigate two token frequency calculation methods and corresponding frequency-based weighting mechanisms for FACE.

Problem Analysis

Model over-confidence and low-diversity are statistical and empirical symptoms of the same problem: imbalance of training losses caused by token frequency variances.

What is model over-confidence?

Figure: Token frequency and model prediction

What is the result of model over-confidence?

Figure: Predicted probability and model generation

Frequent tokens in training data will result in frequent tokens in model outputs.

Why does it influence the response diversity?

Frequent Tokens + Language Model = Frequent Responses

Frequency-Aware Cross-Entropy Loss

How do we make token generation more balanced? We balance model training loss: that's how model is directly influenced.

FACE loss function:

Model trained with FACE:

Experimental Results

Automatic & human evaluations on the Twitter dataset:

Table: Automatic evaluation results; d-n indicates distinct n-grams.

Model	d-1	d-2	BLEU
Seq2Seq	5.87	17.73	8.77
\overline{MMI} -antiLM	6.23	18.21	6.51
MMI-bidi	5.42	15.16	8.20
MHAM	5.52	17.04	8.96
CMHAM	4.99	14.91	8.71
FACE	6.23	24.18	8.33

Table: Human evaluation results (p-value < 0.05 (*), < 0.01 (**), < 0.005 (***)).

•	Comparison	Win	Lose	Gain
	FACE vs Seq2Seq	38.61***	21.54	17.07
	FACE vs MMI-antiLM	51.30 ***	19.35	31.95
	FACE vs MMI-bidi	61.91***	20.92	40.99
	FACE vs MHAM	50.93**	42.56	8.37
	FACE vs CMHAM	43.75 *	38.85	4.90

Some examples:

History	Responses		
Context: i need 4 mo followers Message: u ever watched criminal minds suspect behavior??	FACE : well then you should have said it like that .		
Context : dont you dare steal my idea. i call shenanigans Message : Totally not stealing. Everyone collaborated on that idea.			
Context : I never watched Spongebob's movie tho, was it good? You know Hey Arnold?	FACE : haha, i 'm watching it now, it 's so good: d		
Message : yes it is good u should watch :D haha hey arnould with footballegg face :P	<i>MMI-bidi</i> : oh , that		
Context: perhaps a recipe is in order? I have room in my fridge;)	FACE : sounds good! i'll be sure to check it out! thanks for sharing the mocha cakes with the butter cakes;)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	MHAM : i 'm sure you 'll find a recipe for me!		
Context: Don't laugh at my picture! That's not nice.	FACE : i 'm not a fan of the picture but it 's not that bad, it 's just a pic of me saying " i 'm a girl " haha: -)		
Message : i'm laughing because you actually posted the pic. I believed you:-) lol	,		

Conclusion

- ► FACE loss function can effectively improve diversity and quality of responses
- ► FACE achieves improvements with minimum modifications to original Seq2Seq model, which makes it flexible to extend
- ► A limitation of FACE is that learning procedure is not as stable as cross-entropy, which increases difficulty of training

Source Code & Twitter

