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Abstract Recently, Struck—a tracker based on structured
support vector machine, received great attention as a con-
sequence of its superior performance on many challenging
scenes. In this work, we present an improved Struck tracker
by using color Haar-like features and effective selective
updating. First, we integrate color information into Haar-like
features in a simple way, which models the spatial and color
information simultaneously without increasing the computa-
tional complexity. Second, we make selective model updates
according to the tracking status of the object. This prevents
inferior patterns resulted by occlusions, abrupt appearance
or illumination changes from being added to object model,
which decreases the risk of model drift problem. The exper-
imental results indicate that the proposed tracking algorithm
outperforms the original Struck by a remarkable margin in
precision and accuracy, and it is competitive with other state-
of-the-art trackers on a tracking benchmark of 50 challenging
sequences.

Keywords Object tracking · Structured support vector
machine · Haar-like feature · Selective updating

1 Introduction

The goal of object tracking is to estimate the locations of
a tracked object in every frame of a video sequence. With
the growing interests in video surveillance, human computer
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interaction, vehicle navigation, to name a few, object tracking
has become an important topic in the field of computer vision.
Meanwhile, object tracking is still a challenging task due
to the presence of occlusion, abrupt object motion, chang-
ing appearance, background clutter and so on. Readers are
referred to [18,28,29,37] for more details.

Tracking algorithms can be generally classified into two
categories: generative and discriminative. Generative track-
ing methods maintain an appearance model of the tracked
object, which is expected to account for appearance changes
of the target. In this kind of method, tracking process is for-
mulated as comparing the similarity between candidates and
the model. Here are some examples of such method: eigen-
tracker [4] utilizes eigenspace representations for targets;
kernel-based tracker [7] employs a feature histogram-based
target representation with spatial masking; in �1 tracker [19],
targets are sparsely represented; covariance tracker [24] rep-
resents an objectwindowas the covariancematrix of features;
incremental tracker [25] learns a low-dimensional subspace
representation incrementally; Zhou et al. [39] proposed a
tracking algorithm based on weighted subspace reconstruc-
tion error.

Discriminative trackers usually treat tracking task as a
classification problem. Rather than building an exact appear-
ance representation of the target, discriminative trackers
focus on finding decision boundaries between the object and
the background. In [6], an online feature ranking mechanism
is applied to adaptively select the most discriminative fea-
tures for tracking. In [2], online multiple instance learning
is used to help achieving robust and stable tracking perfor-
mance. Global mode seeking is applied in [30] to detect the
object after total occlusion and reinitialize the local tracker.
SVT [1] integrates the support vector machine classifier
into an optic-flow-based tracker. In [31], a generative model
encoding all the appearance variations is used to reacquire
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the object, and a discriminative classifier, implemented as
an online support vector machine, is trained to focus on
recent appearance changes. In [9], a trackingmethodutilizing
one-class SVM that adopts histograms of oriented gradient
and 2-bit binary patterns as features is proposed. In [38],
a sparsity-based generative model and a sparsity-based dis-
criminative classifier are used collaboratively.

Hare et al. [12] note that previous discriminative track-
ers have a problem that, the objective for the classifier and
that for tracker are not consistently coupled during learning.
To overcome this problem, they use a kernelized structured
SVM algorithm (named as Struck) [12] with SMO opti-
mization method [23], which shows superior performance
in recent challenging benchmark testings [21,27]. Actually,
Struck treats tracking as a regression problemmore than clas-
sification problem, which is more suitable for tracking task
compared with the binary classifiers in previous works.

Struck employs the widely used Haar-like feature [26] as
its image representation method, which is a block-wise gra-
dient feature designed for grayscale images. However, video
sequences are mostly in color nowadays, and color informa-
tion is some kind of important for tracking task. Although the
Haar-like feature applied to grayscale images performs well,
it cannot utilize the color information of color sequences, and
this may cause tracking failure at times, as shown in Fig. 1a.
So if we can introduce color compatibility into Haar-like fea-
tures, the spatial and color information of the target can be
modeled simultaneously, thus improving the performance of
Struck tracker. In Chang’s work on object detection [5], they
extend Haar-like feature with color compatibility by extract-
ing Haar-like features from each channel of color image.
In this paper, we propose a novel method to incorporate
color information into Haar-like feature without increasing
the computational complexity.

For tracking algorithms,model updates are very important
to keep the tracker recognizing target appearance variations.
As to discriminative trackers, the key issue is to improve
the sample collection part to make the online-trained clas-
sifier more robust [22,27,32,33]. The incremental updating
methods used in MIL tracker [3] and CT tracker [36] are
not very effective as they treat previous samples equally.
Struck [12] dynamically adjusts the relative weights (the
coefficients of support vectors) of all samples by applying
SSVM to learn discriminative classifier. But when conditions
such as occlusions or abrupt appearance changes happen, the
samples extracted from current frame are unreliable. If the
classifier is updated using these samples, it will respondmore
to the background in the following frames, and target drift
may happen gradually. Therefore, if the tracker can selec-
tively reject unreliable samples in the updating process, the
classifier should perform better.

In this work, we present an improved Struck tracker
via color Haar-like feature and selective updating. We will

Fig. 1 Clear color distinction between the tracked doll and the back-
ground of Lemming sequence. a Tracking results of original Struck
tracker, which fails at about 970th frame. Images are converted to
grayscale before tracking. The background which confuses the tracker
is actually very different from the target in color sequence. b Tracking
results of the improved Struck tracker with our proposed color Haar-like
feature, which will be introduced in Sect. 3.1

explain the advantages of the proposed tracking method
against original Struck from the aspects of feature represen-
tation and model updating. The experimental results show
that our method performs better than the original Struck in
precision and robustness, meanwhile it is competitive with
state-of-the-art trackers according to a tracking benchmark
[27] of 50 challenging video sequences.

The rest of this paper is organized as follows: in Sect. 2,
we introduce some backgrounds of our work; in Sect. 3 we
describe our proposed methods in great details; in Sect. 4,
we perform experiments to compare our work with original
Struck [12] and other state-of-the-art algorithms; then we
conclude in Sect. 5.

2 Background

In this section, we first explain the main procedure of the
tracking-by-detection framework, then we introduce the tra-
ditional binary SVM and structured output SVM algorithm
(Struck [12]) for tracking.

2.1 Tracking-by-detection

Object tracking task can be described as follows: with the
target position given as a bounding box in the first frame of
a video sequence, predict the positions of the object in the
following frames. In recent years, the tracking-by-detection
framework has been widely applied, since it is very suitable
for tracking tasks.
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Tracking-by-detection consists of two stages: learning and
detection. With the object position known in the first frame,
training samples are extracted (typically with binary labels)
to learn a tracker. In next frame, the target position is detected
by the tracker first, then learning process is applied as that
in the first frame to update the tracker. These two stages are
iteratively carried out this way in the following frames.

Typically, tracking-by-detection framework is used cou-
pled with discriminative classifiers. As the two stages
described above take turns to work during tracking, the
classifier is updated in such an online manner, therefore
tracking-by-detection algorithms are usually called online
trackers [2,12,34].

2.2 Binary SVM tracking

Traditional SVM algorithms treat object tracking task as a
binary classification problem. Let pt ∈ P be the 2D bound-
ing box target position in the t-th frame of a video sequence:
ft ∈ F . With p1 given, features x

p
1 ∈ X extracted from the

first frame at positions p = p1 ◦ y, where y ∈ Y represents
transformations (typically translations), are assigned binary
labels z = ±1 according to y, the notation ◦ is a transform
operator. Then the sample pairs (x, z) are fed to the training
process to learn a separating hyperplane w, which separates
positive samples from negatives. The classification function
h : X → R is given as h(x) = wTx, the label of a new
feature vector x is determined by ẑ = sign(h(x)).

At frame ft , the target position of previous frame ft−1 is
estimated as pt−1. Then the goal of tracking the target at this
frame is to find a transformation yt . The best estimation of
the transformation is found according to :

yt = argmax
y∈Y

h
(
xpt−1◦y
t

)
, (1)

and the best target position of frame ft is pt = pt−1◦yt . After
pt being estimated, features xpt are extracted with binary
labels. Then these new samples are used to update the clas-
sifier w.

The main drawback of this process is that classifier is
trained without spatial information of the samples, because
of the projection from transformations y to binary labels z.

2.3 Struck: structured SVM tracker

To deal with the problemmentioned above, Struck [12] intro-
duces structured output SVM (SSVM) into object tracking.
The main procedure of SSVM for tracking is the same as
binary SVM, in this part we mainly focus on primary differ-
ences.

SSVM discards the projection operation by using the
transformations y directly as its structured labels. So the sam-

ple pair is now written as (x, y), and we denote the sample
pair with joint kernel map as Φ(x, y).

Similar as binary SVM, the separating hyperplane is
learned through a convex quadratic programming function:

min
w

1

2
‖w‖2 + C

n∑

i=1

ξi (2a)

s.t. ∀i : ξi ≥ 0 (2b)

∀i,∀y �= yi : 〈w, δΦi (y)〉 ≥ Δ(yi , y) − ξi , (2c)

where δΦi (y) = Φ(xi , yi ) − Φ(xi , y). The difference
between this function and that of binary SVM lies in (2c).
The corresponding constraint inequation in binary SVM is:

zi 〈w, x〉 ≥ 1 − ξi . (3)

Because of the discard of binary labels z, (3) is inappropriate
for SSVM.

The Δ(yi , y) in (2c) denotes a loss function, which shows
the dissimilarity between a transformation y and the best
transformation yi . It is typically based on the bounding box
overlap:

Δ(yi , y) = 1 − sopt (yi , y), (4)

where

sopt (yi , y) = (pt ◦ yi ) ∩ (pt ◦ y)
(pt ◦ yi ) ∪ (pt ◦ y)

(5)

is the overlap function.
To solve the function (2a)–(2c) forw, Struck [12] typically

employs Lagrangian duality technique and SMO optimiza-
tion step [23]. The solving process is beyond the scope of this
work, we refer the readers to [12,23] for detailed descrip-
tions.

3 The proposed tracking method

In this section, we introduce the improved Struck tracker
from two aspects. First, we improve theHaar-like feature rep-
resentation by incorporating multi-channel information into
it (referred as Color Haar-like), which is originally designed
to deal with grayscale images only. Second, we propose a
selective update scheme (SUS) to prevent inferior model
updates.

3.1 Object representation with color Haar-like feature

Haar-like feature representation is widely used by modern
tracking algorithms [2,12,17], since it is simple and effec-
tive. But Haar-like features were commonly used to process
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Original Image Our Color Haar-like

Haar-like extracted from each channel of color image

Green ChannelRed Channel Blue Channel

Grayscale Image Gray Haar-like used by Struck

Fig. 2 Compare our color Haar-like with original gray Haar-like and
existing color-based method [5]. Our method extracts each patch of
a Haar-like block in a randomly selected channel, so every block is
integrated with color information and the dimensionality is equal to
gray Haar-like. While the existing method extracts Haar-like blocks
from every channel of the image, respectively

grayscale images. When the sequence is in color, images
need to be converted to gray scale, thus causing loss of color
information.

For example in Fig. 1a, the color of the doll being tracked
is very different from the background in color images.
But when converted to grayscale images, the difference
becomes inconspicuous, and this results in the tracker’s
failure eventually. Moreover, the dual optimization strategy
and Gaussian kernel function used by Struck [12] require
low-dimensional feature vectors, otherwise the tracking pro-
cedure will be very time-consuming. Here, we propose a
method to incorporate multi-channel information into Haar-
like feature elegantly without increasing its dimension. Note
that the color Haar-like feature mentioned here was called
multi-channelHaar-like feature in our preliminarywork [20].

In our method, each patch of the Haar-like block is calcu-
lated in one of the three channels randomly. Our method
utilizes the same six types of Haar-like feature arranged
on a 4 × 4 grid at 2 scales, resulting a 192D feature vec-
tor. Although patches are selected from all three channels,
the dimension of feature vector is the same as Struck’s.
Compared with the existing color-based Haar-like feature
[5] as mentioned in Sect. 1, their method will result in a
192 × 3 = 576D feature vector for each sample, which
will be more time-consuming than ours. The illustration of
the differences between their method and ours is shown in
Fig. 2, and we will show that our method is more effective
in the experiments section.
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Fig. 3 a Two screen shots and the line chart of history scores of the
Jogging-2 sequence. It is shown that classification score changes slowly
when the object is well tracked before frame 45, where the target is
becoming occluded. Then the original Struck tracker lost the target and
the classification scores become very unstable in the following frames.
b By using our proposed selective update scheme, the improved Struck
tracker managed to recapture the target after occlusion. Although the
score decreases to some extent when occlusion happens, the overall
curve is much more smooth than that of (a). a Original Struck tracker
with occlusion, b improved Struck tracker with occlusion

By using color Haar-like feature, the improved Struck
tracker tracks the doll successfully as shown in Fig. 1b. We
will show more comparisons of our color Haar-like feature
representation against original gray Haar-like in the experi-
ments section.

3.2 Selective update scheme

In this part, we introduce the proposed selective update
scheme, which is used to prevent the discriminative classifier
from being contaminated by bad training samples.

We observed that when target appearance changes
smoothly and slowly, the classification scores of the tar-
get will fluctuate mildly. Since the classifier keeps being
updated to recognize the target well, when unexpected condi-
tions (such as occlusions, abrupt target appearance changes
and drastic illumination changes) happen, the classification
scores will decline significantly. Figure 3a is an example of
occlusion. As we can see, before occlusion happens at about
45th frame, the classification scores are relatively stable. But
when the target is occluded, scores drop to 0 drastically. Since
the target is occluded, the training samples extracted from
this frame contain lots of noises. If the classifier is updated
using these unreliable samples, the subsequent classification
scores will become unreliable, then the tracker may get lost
into backgrounds.

To deal with this problem, we propose a selective update
scheme (SUS) to detect unexpected conditions right after
they happen. Then the update process is stopped to protect
the classifier from being contaminated.
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Algorithm 1 Color Struck with Selective Update Scheme
Input: p1, video sequence ft (t = 1 . . . N )

Output: pt
1: w = Initialize(f1,p1)
2: for i=2:N do
3: si = GetScore(w, fi , pi−1)
4: Calculate ut
5: if ut == 0 then
6: Update w by Struck with color Haar-Like feature
7: pi = GetPosition(si , fi )
8: else
9: Skip update
10: Remove si from history scores
11: pi = pi−1
12: end if
13: end for

We base our assumption on the observation that, classifi-
cation score changes slowly with smooth target appearance
variation. Therefore, in a narrow time window, the scores
will be close to each other. Let ut denote the detection state
of unexpected conditions at frame ft . The best score of ft is
denoted as st , and k is the time window. Then we define:

ut =

⎧
⎪⎪⎨

⎪⎪⎩

1 if st <
a

k

t−1∑

i=t−k

si

0 otherwise,

(6)

where a is a scaling factor. It means unexpected conditions
are detected when ut = 1, and the update process of frame ft
is skipped. As shown in Fig. 3b, our improved tracker man-
ages to recapture the target after occlusion in the Jogging-2
sequence, and the score chart becomes more smooth. The
overall effect of our SUS scheme will be shown in the exper-
iments section.

3.3 The proposed tracking algorithm

In order to clearly show the position where our color Haar-
like feature and SUS scheme work, we give the overall
tracking process in Algorithm 1. Note that Algorithm 1
focuses on themain process of our proposed algorithm, some
details are omitted to keep the conciseness. To realize more
concrete explanations of the update process and sampling
strategy, please refer to [12].

4 Experiments and analysis

In this section, we evaluate our proposed tracker by com-
paring it with original Struck and some other state-of-the-art
trackers on a benchmark dataset [27]. First we introduce the
experimental setups, then we perform comparative experi-
ments. We run our C++ implementation on a PC with Intel

E5-2650 CPU (2.30GHz) and 32GB memory. The source
codes of this paper will be released to public for repeatable
research.

4.1 Experimental setup

Parameter settings For all sequences, we use fixed parame-
ter values to perform robustness evaluation. The six different
types of color Haar-like features are arranged on a 4 × 4
grid of 2 scales with each feature normalized to [−1, 1].
We set the time window k = 10, and the scaling factor
a = 0.6 for SUS. The other parameters are remained the
same as the default settings in Struck: σ is set to 0.2 for
Gaussian kernel, penalty parameter C = 100; during track-
ing, search radius r = 30 pixels is used; in the updating
process a polar grid of 5 radial and 16 angular divisions with
r = 60 is used; budget size B = 100 for support vector
maintenance.
Benchmark dataset We evaluate our tracker on a benchmark
dataset of 50 video sequences [27]. The sequences are anno-
tated with 11 attributes: illumination variation (IV), scale
variation (SV), occlusion (OCC), deformation (DEF),motion
blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-
plane rotation (OPR), out-of-view (OV), background clutters
(BC) and low resolution (LR). For robustness evaluation,
we perform all three tests provided by the benchmark [27]:
one-pass evaluation (OPE), temporal robustness evaluation
(TRE) and spatial robustness evaluation (SRE). OPE initial-
izes the tracker with the ground truth position in the first
frame and then run it throughout the test sequence. TRE
divides each sequence into 20 fragments and initializes the
tracker with the ground truth position of each fragment, then
the tracker runs to the end of the sequence. SRE initializes
the trackers with 12 different disturbances of the bounding
box in the first frame, including eight spatial shifts and four
scale variations. Each of the three tests is evaluated through
precision plot and success plot. Precision plot measures the
average Euclidean distance between the center locations of
tracked targets and the manually labeled ground truths, the
score for the threshold=20 pixels is used as the representa-
tive precision score. Success plot measures the overlap of
tracked bounding box and the ground truth, it shows the
ratios of successful frames at the thresholds varied from 0
to 1, and the score is calculated by the area under the curve
(AUC).

4.2 Compare with original struck

The performance comparisons of our improved Struck
tracker and original Struck [12] are listed in Table 1. For con-
venience, we denote Struck with color Haar-like as C-Struck
and Struck with color Haar-Like and SUS as CS-Struck. C2-
Struck uses the feature extraction method proposed in [5],
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Table 1 Comparisons between
original Struck and our
improved Struck tracker

OPE TRE SRE FPS

Precision Success Precision Success Precision Success

Struck 0.656 0.474 0.707 0.514 0.634 0.449 10.801

Struck2015 – – 0.785 0.545 0.707 0.469 –

C-Struck 0.713 0.498 0.779 0.553 0.707 0.488 10.193

C2-Struck 0.683 0.487 0.759 0.547 0.666 0.467 3.075

CS-Struck 0.747 0.520 0.782 0.555 0.717 0.494 10.112

The results of Struck is given by [27]. In the recent version of Struck [11], they made some improvements
and gave out the TRE and SRE scores on benchmark [27], here we refer it as Struck2015. C-Struck uses our
proposed color Haar-like feature, C2-Struck uses the Haar-like feature proposed in [5]. CS-Struck uses the
color Haar-like and SUS proposed in this paper simultaneously. The entries in bold indicate the best results,
and the ones in italic indicate the second best

Fig. 4 Tracking comparisons
of sequences Basketball, David,
David3, Jogging-1, Tiger1, one
sequence in each column. Our
tracker is the improved Struck
with color Haar-like feature and
SUS

they extract Haar-like features from each of the image chan-
nels, respectively, as described in Sect. 3.1.

From Table 1, we can see that compared with Struck, C-
Struck obviously improves OPE precision and success ratio
from 0.656 and 0.474 to 0.713 and 0.498, respectively. Fur-
thermore, CS-Struck performs better than C-Struck in all
indexes as it prevents bad sample from polluting the target
model, it takes the first places in almost every index except
TRE precision.

In their newer version of Struck2015 [11], they made
some improvements in feature representation by usingmulti-
feature and multi-kernel. They use 192D gray Haar-like
feature with Gaussian kernel and 480D Histogram feature
with intersection kernel, resulting in a 672D feature vector
for each sample. Note that in C-Struck, we use our color
Haar-like feature of 192D, but our tracker still performs bet-
ter than Struck2015 in the success scores of TRE and SRE
and have the same score in SRE precision.

C2-Struck extracts a 576D feature vector for each sample
including color information, and this improves the original
Struck in all indexes. But their feature extraction method [5]
performs worse than ours as the comparison of C-Struck and
C2-Struck shown in Table 1. Besides, as the dimensionality
of the feature vectors extracted by their method is greater (3
times of ours), the speed of their method is much slower.

To fairly compare the tracking speed, we record the FPS
of a same video sequence (Basketball). It can be seen that C-
Struck andCS-Struck barely decrease the tracking speed. The
reason is that the computational complexity of the proposed
color Haar-like feature is almost the same as gray Haar-like
except that it needs to compute the integral images of three
channels.

4.3 Compare with state-of-the-art trackers

In this part, we perform comprehensive evaluation to com-
pare our tracker (CS-Struck) with several state-of-the-art
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Fig. 5 Compare with state-of-the-art trackers on TB50

trackers on the benchmark TB50 [27]. Besides Struck [12],
we choose other top 5 trackers presented in [27], they are:
SCM [38], TLD [15], ASLA [14], CXT [8] and VTD [16].
In addition, we add three more recent trackers in our com-
parison, they are: STC [35], KCF [13] and TGPR [10].

To perform qualitative comparisons, we display some
screen shots of the five best trackers in Fig. 4. From the
screen shots of sequences Basketball and David, we can see
that as color information is used, the distinction between
target and background is more obvious, so our tracker man-
ages to overcome the challenges which make the original
Struck tracker fail (as indicated by purple rectangles). From
sequences David3, Jogging-1 and Tiger1, it can be seen that
our tracker deals with occlusions very well.

For quantitative comparisons, the overall results with pre-
cision and success plots are shown in Fig. 5. Although STC
[35] exploits the dense spatial-temporal context for track-
ing with fast speed, it does not rank top 10 on the tracking
benchmark [27]. This indicates that it is not robust enough
for changing environments except fast speed. TGPR [10]
robustly handle tracking via Gaussian Processes Regression
on this benchmark with a low speed of about 0.5 fps. Finally,
KCF [13], as a very fast tracker with the skill of circulant
matrix recently get state-of-the-art evaluation on this bench-
mark. Compared with KCF, our tracker obtains competitive
performance. Although the proposed tracking method is
slower than KCF, it outperforms KCF slightly in all indexes
except the success ratio of TRE. Besides, since SRE tests
contain spatial perturbations, the high score in SRE indicates
that our tracker is more spatially robust than other trackers.

5 Conclusion

In this work, we present an improved Struck tracker by using
Color Haar-like feature and selective update scheme. First,
the Color Haar-like features naturally integrate spatial and
color information of the target without increasing the dimen-
sionality of the feature vector, which is better than gray
Haar-like feature for object representation. Second, by using
selective update scheme, our tracking method prevents bad
samples from being added into training set, which reduces
the risk of model drift problem of the trained discriminative
classifier. The experiments on tracking benchmark show that
our improved Struck tracker performs better than original
Struck with a large margin, meanwhile it also gets competi-
tive results compared with other state-of-the-art trackers.
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